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In the study of photonic crystals, the question arises naturally: Which crystals pro-
duce the largest band gaps? This question is investigated by means of an optimization-
based evolution algorithm which, given two dielectric materials, seeks to produce
a material distribution within the fundamental cell which produces a maximal band
gap at a given point in the spectrum. The case ofH -polarization in two dimensions
is considered. Several numerical examples are presented.c© 2000 Academic Press
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1. INTRODUCTION

Consider electromagnetic wave propagation in a periodic, dielectric, non-magnetic me-
dium inR2. We are interested in the case where the magnetic field vectorH is polarized
orthogonal to the direction of wave propagation. The time-harmonic Maxwell equations
then reduce to the scalar equation

−∇ · (γ∇u) = ω2u, in R2, (1)

whereγ (x)= 1/ε(x), ε is the real dielectric coefficient of the medium,u is the out-of-plane
component of the magnetic field, andω is the frequency. The structure is assumed to be
periodic with respect to the integer lattice3 = Z2, Z = {0,±1,±2, . . .}. In other words,

γ (x) = γ (x + n) for all n ∈ 3, andx ∈ R2.
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An interesting feature of structures of this type is that, for certain functionsγ , band
gaps, i.e., intervals of frequencies in which waves cannot propagate in the medium, appear.
This was proved in the case of certain high contrast structures by Figotin and Kuchment
[7, 8], and has been observed both computationally and experimentally in many other
cases. See [1, 9] for an introduction to photonic crystals, computational methods, and
applications. In two dimensions, band gaps can occur both in theH -polarization case, as
modeled by (1), and in theE-polarization case, for which the model is−1u=ω2εu. In a
previous paper [5], considering theE-parallel polarization case, the question was studied:
Which periodic structures, composed of arbitrary arrangements of two given dielectric
materials, produce the largest band gaps? The question was formulated as an optimization
problem, and approximate solutions were obtained through numerical computations. In
the present paper, our aim is to carry out a similar program of investigation for theH -
parallel polarization model (1). TheH -parallel problem is more difficult both theoretically
and computationally, due to the fact that the unknown coefficientγ is now present in the
differential operator. Further, a primary deficiency of the approach of [5] was that it required
an initial guess which already had a band gap. Here, a new evolution algorithm is presented
which allows structures with gaps to be produced without knowledge of an initial structure
with a gap.

The outline of this paper is as follows. In the next section we introduce the family of Bloch
eigenproblems associated with problem (1). We then formulate in Section 3 the problem
of maximizing band gaps about a given reference function and calculate the generalized
gradient of the objective. In Section 4. the evolution algorithm is described. Finally in
Section 5 the results of several numerical experiments are presented.

2. EIGENPROBLEMS

The standard procedure for analyzing problem (1) overR2 is to reduce it to a family of
subproblems over the periodic domain (torus)

Ä = R2/3,

which can be identified with the unit square (0, 1)2 with periodic boundary conditions.
Defining the first Brillouin zoneK = [−π, π ]2, we seek eigenfunctionsu of (1) in the form
of Bloch modes (see, e.g., [11]),

u(x) = eiα·xuα(x),

where the quasimomentum vectorα ∈ K , and the functionuα is periodic.
If ω2 is an eigenvalue corresponding to the Bloch modeu with α ∈ K given, it follows

formally that the pair (ω2, uα) should satisfy

−(∇ + iα) · γ (∇ + iα)uα = ω2uα in Ä. (2)

Conversely, eigensolutions of (2) yield Bloch mode solutions for problem (1). The trans-
formation from problem (1) to the family (2) can also be viewed as an application of the
Floquet transform [10]. We are interested in the family of problems (2) asα ranges overK .
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Let us rewrite (2) as

A(γ, α)u = λu, α ∈ K , (3)

whereA(γ, α) = −(∇ + iα) · γ (∇ + iα) and the subscriptα has been dropped fromuα.
Assuming thatγ is real, bounded, measurable, and has strictly positive essential infimum,
one can show easily thatA(γ, α) is symmetric and positive semidefinite, with compact
resolvent onL2(Ä). It follows that the spectrum of (3) consists of a discrete sequence of
nonnegative eigenvalues, each of finite multiplicity. Obviously each eigenvalueλ depends
onγ andα. Repeating each eigenvalue according to its multiplicity, we enumerate

0≤ λ1(γ, α) ≤ λ2(γ, α) ≤ λ3(γ, α) ≤ · · ·∞.

For a givenγ , the Bloch spectrumB can be defined

B = {λ j (γ, α) : α ∈ K , j = 1, 2, 3, . . .}.

Frequenciesω such thatω2 /∈B have no associated Bloch modes and do not propagate in
the structure. In the next section we formulate an optimization problem to find functionsγ

which maximize gaps in the Bloch spectrum.

3. OPTIMAL DESIGN PROBLEM

Suppose that we are given two materials, say with dielectric constantsε0 andε1, such
thatε0<ε1. We wish to find arrangements of the materials within the fundamental cellÄ

which result in maximal gaps in the Bloch spectrum. Let us define a class of admissible
designs consisting of arbitrary arrangements of the two materials

ad ≡
{
γ (x) : γ (x) = 1

ε0
χ(x)+ 1

ε1
(1− χ(x)), χ ∈ S

}
,

whereS denotes the set of all measurable functions onÄ which are bounded between 0
and 1. We interpretχ(x) as the volume fraction of materialε0 present at the pointx.

Let q(α) be a given real-valued function defined on some subsetK0⊆ K . The number
q(α) represents a squared frequency about which we would like to maximize the distance
to any eigenvalueλ j (γ, α).

Assume that there existsγ0∈ad and some indexj such that

λ j (γ0, α) < q(α) < λ j+1(γ0, α), for all α ∈ K0.

We then define

g(γ,q;α) ≡ min{q(α)− λ j (γ, α), λ j+1(γ, α)− q(α)}, (4)

and

G(γ,q) ≡ inf
α∈K0

g(γ,q;α). (5)
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Holdingq fixed, we then consider the optimization problem

sup
γ∈ad

G(γ,q). (6)

The case whereK0= K andq(α) ≡ ω2
0 corresponds to maximizing a band gap of the

structure about the center frequencyω0. The more general case of arbitraryq and K0 is
necessary to implement the evolution algorithm described in a following section and may
also be of interest for producing structures with directionally dependent band gaps.

One may rightfully question whether or not problem (6) admits a solution. In fact, similar
optimal design problems in mechanics are well known to give rise to optimizing sequences
of designs which become highly oscillatory and have no limit within the admissible class.
One of two strategies is usually employed to render such a problem well-posed. The first
is to constrain the admissible setad to have sufficient compactness properties so that a
convergent minimizing sequence is guaranteed. This is often accomplished through some
smoothness or perimeter constraint. The second strategy is to “relax” the admissible class
ad. This is accomplished by studying limiting behavior of minimizing sequences and en-
larging the admissible class to include appropriate limits. In the case of (6), such limits
would include anisotropic media with certain constraints on the eigenvalues of the dielectric
tensors.

Interestingly, in the numerical examples that follow, minimizing sequences showed no
tendency to become oscillatory and converged to roughly the same solution regardless of
the level of discretization of the problem. Finding the conditions under which existence of
a solution can be guaranteed remains an important open problem, but further analysis is
beyond the scope of this paper.

In order to find approximate solutions to problem (6), would like to compute the gradient
of G with respect toγ . From the definition ofG in (4) and (5) we observe three difficulties
which may renderG nondifferentiable in a classical sense. First, the eigenvaluesλk may
not be smooth functions ofγ at points of multiplicity. Multiple eigenvalues cannot be ruled
out and in fact are typical for structures with symmetry. Second, the minimum in (4) is
not smooth when the two arguments are equal. Finally, in (5), the infimum of a family of
functions may not be smooth, even if each function in the family is smooth. Nevertheless
the resulting composite functionG is Lipschitz continuous (with an appropriate norm on
γ ), and so the concept of the generalized gradient, as defined by Clarke [2], makes sense.

Taking the domain of definition ofG to be the spaceX of bounded measurable functions
of Ä, the generalized directional derivative ofG at γ (with respect to the first argument),
in the directionη is defined by

G0(γ,q)(η) ≡ lim sup
γ̃→γ
t↓0

G(γ̃ + tη,q)− G(γ̃ ,q)

t
.

The generalized gradient ofG with respect toγ is then defined by

∂γG(γ,q) ≡ {ξ ∈ X′ : G0(γ,q)(η) ≥ 〈ξ, η〉, for all η ∈ X},

whereX′ denotes the dual space ofX. Using the calculus of generalized gradients described
in [2], and the results of Cox [4], the generalized gradient∂G (with respect toγ ) can be
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calculated in a straightforward way. First, following [4], we find

∂γ λk(γ, α) ⊂ co
{|(∇ + iα)u|2 : u∈ E1

k (γ, α)
}
,

whereE1
k (γ, α) is the span of all eigenfunctionsu associated with the eigenvalueλk(γ, α)

and satisfying the normalization
∫
Ä
|u|2 = 1. Here co denotes the convex hull, i.e., the set of

all convex combinations of elements in the given set. From (4) and [2, Proposition 2.3.12],
we have

∂γ g(γ,q;α) ⊂ co{∂γ λ j+1(γ, α),−∂γ λ j (γ, α)}.

Finally, from (5) and [2, Theorem 2.8.2], we find

∂γG(γ,q) ⊂ co{∂γ g(γ,q;α) : α ∈ Argming(γ, g; ·)}.

Assembling the three previous results,

∂γG(γ,q) ⊂ co
{

co
{

co
{|(∇ + iα)u|2 : u ∈ E1

j+1(γ, α)
}
,

co
{−|(∇ + iα)u|2 : u ∈ E1

j (γ, α)
}}

: α ∈ Argmin g(γ, g; ·)}. (7)

Note that∂G can be computed knowing only the eigenfunctions associated with eigenvalues
λ j (γ, α) andλ j+1(γ, α) at the points where minima occur with respect toα in the definition
(5). Since these eigenfunctions must typically be computed anyway to evaluateG, obtaining
gradient information is essentially no more expensive than computing the value of the
function itself.

4. EVOLUTION ALGORITHM

The basic algorithm consists of an inner optimization loop and an outer evolution, or
homotopy, loop. The optimization loop is a simple projected generalized gradient ascent
method, similar to the scheme described in [5]. We note that many general purpose algo-
rithms exist for extremizing nondifferentiable functions (see, for example, [12]), as well as
more specialized methods designed for minimax problems (see, for example, [3]). Any of
these algorithms could in principle be substituted for our primitive optimization method.
The evolution loop is a simple strategy to homotopically deform the band structure of a
given initial design into a desired configuration.

Assume we are given a closed subsetK0 ⊆ K , a real-valued “target” functionq1 defined
on K0, an initial designγ0∈ ad, and a functionq0 defined onK0 such that

λ j (γ0, α) < q0(α) < λ j+1(γ0, α), for all α ∈ K0.

ThusG(γ0,q0)>0. For 0< t < 1, defineqt (α)= tq0(α)+ (1− t)q1(α). Define the projec-
tion operatorP : L1(Ä)→ adby

(P f )(x) =


1/ε1 if f (x) < 1/ε1,

1/ε0 if 1/ε0 < f (x),
f (x) otherwise.
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The basic algorithm proceeds as follows.

1. Sett := 0, k := 0, flag = 0.
2. WhileG(γk,qt ) < tol1 and flag= 0,

a. Choose a direction sk ∈ ∂G(γk,qt ) and a step sizeβk

to yield an increase inG,
b. Setγk+1 = P(γk + βksk).
c. Setk := k+ 1.
d. If step is sufficiently small then stop.

end
3. If t < 1, increaset by tol2,

else setflag := 1.
4. Go to step 2.

Thewhile loop in Step 2 constitutes the optimization. Step 2a in the inner loop is accom-
plished by solving a small subproblem via linear programming, as described in [5]. By
increasing the objectiveG(γ,qt ), eigenvalue bands are “pushed away” fromqt . When all
eigenvalues are sufficiently far away (controlled bytol1) from the currentqt , the outer loop
moves the currentqt linearly toward the targetq1, by an amounttol2 (Step 3). The two
tolerancestol1 andtol2 are kept fixed and must be selected beforehand. The value oftol1 is
not crucial and can be chosen to be any relatively small number. The parametertol2 must
then be chosen such that

tol2 < tol1/max
α
|q0(α)− q1(α)|,

so that the condition

λ j (γk, α) < qt+tol2(α) < λ j+1(γk, α), α ∈ K0

holds for the next iteration. Provided that each inner optimization is successful, the outer
loop gradually movesqt toward the targetq1, until finally it is reached. At this point, a flag
is set (Step 3) which allows the optimization to proceed without further stops to updateq.
Convergence is checked in Step 2d according to step length. Note that the usual necessary
condition for optimality 0∈ ∂G (see Clarke [2]) may not hold in this setting due to the
constraints onγ .

5. NUMERICAL RESULTS

The algorithm described in the previous section was implemented in a discrete setting
using a finite element method coupled with a preconditioned subspace iteration for compu-
tation of the eigenvalues. The method employed for eigenvalue computation, and references
to several other methods for band structure calculations, can be found in [6]. The number of
eigenvalue computations carried out at each step in the optimization can be greatly reduced
by considering only designs with some symmetry. In particular, we assume thatγ (x) is
invariant under the transformations

(x1, x2) 7→ (−x1,−x2), (x1, x2) 7→ (−x1, x2) (x1, x2) 7→ (x1,−x2).

In this case, it follows easily [5] that all possible eigenvalues must occur in the triangular
subset of the Brillouin zone

T = {(α1, α2) : 0≤ π, 0≤ α2 ≤ α1}.
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FIG. 1. Brillouin zone, with labels for symmetry points.

This region is shown in Fig. 1, along with labels on the vertices. Band structure plots in the
figures below show frequenciesω/2π asα moves around the perimeter ofT , from0, to X,
to M , and back to0.

Due in part to the crude step size control strategy used in our optimization algorithm, a
large number of iterations are typically required before any kind of convergence is observed.
For the examples shown below, generally several thousand iterations (the total number of
steps in the inner optimization loop) were taken. Fortunately, this is possible with reasonable
computational effort since each step is quite inexpensive. With all code written inMatlab
and running on a 400 MHz Linux PC, a complete run of the evolution algorithm could
generally be done overnight. With a more sophisticated optimization algorithm, the com-
putational effort could probably be reduced significantly. All finite element computations
were done on a uniform 64× 64 grid.

The following examples are computed using two materials with dielectric coefficients
ε0= 1 andε1= 9. These values represent high-contrast materials in the optical frequency
range. Generally structures with larger gaps can be obtained if one is allowed to use higher
contrast materials.

In the first example, we take as an initial guess a low-contrast structure, shown in Fig. 2a,
which contains no band gaps. The structure is composed of two materials, with dielectric
coefficientsε= 2.5 and 5. (The same structure does have a large band gap between the first
and second bands with materialsε0= 1 andε1= 9.) We begin the evolution algorithm with
q0(α)= λ1(α)+ δ, whereδ is a small positive number. This positionsq0 between the first
and second eigenvalue bands, as shown in Fig. 2b. The targetq(α) is set to a constant, so
that the optimized structure should have a band gap. The results are shown in Fig. 3. As can
be seen, the optimized structure exhibits a band gap nearω/2π ≈ 0.39.

In the second example, we take as a starting point the smooth structure shown in Fig. 4a.
The volume fraction of high index material in each cell is proportional to the Gaussian
e−2π |x|2. This structure has no band gap in the lower bands, as shown in Fig. 4b. The goal is
to introduce a gap between the third and fourth bands. Similar to the previous example, we
takeq0(α)= λ3(α)+ δ and set the targetq(α) constant. The optimized structure is shown
in Fig. 5a. As can be seen in Figs. 5b and 5c, this structure has a relatively large gap between
the third and fourth bands, centered atω/2π ≈ 0.58.
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FIG. 2. Starting point for first example. (a) Initial structure. Dark representsε= 2.5, light representsε= 5.
(b) Eigenvalue bands. Dashed line isq0(α). Note that a 4× 4 array of cells is illustrated in (a); computations were
done on a single cell.

FIG. 3. Optimized structure for first example. (a) Optimized structure. (b) Eigenvalue bands. Dashed line is
q1(α). (c) Density of states, calculated by a sample of 4096 uniformly spaced points in the first quadrant of the
Brillouin zone.
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FIG. 4. Starting point for second example. (a) Initial structure. Dark representsε= 2, light representsε= 7.
(b) Eigenvalue bands. Dashed line isq0(α).

FIG. 5. Optimized structure for second example. (a) Optimized structure. (b) Eigenvalue bands. Dashed line
is q1(α). (c) Density of states.
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FIG. 6. Starting point for third example. (a) Initial structure. Dark representsε= 2, light representsε= 7.
(b) Eigenvalue bands. Dashed lines are initialq(α) functions (the second line is not visible due to proximity with
the fourth band).

FIG. 7. Optimized structure for third example. (a) Optimized structure. (b) Eigenvalue bands. Dashed lines
are targetq(α) functions. (c) Density of states.
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With an obvious modification, the evolution algorithm can also be used to produce struc-
tures with multiple band gaps. Consider for example the smooth starting point shown in
Fig. 6a. This corresponds to a Gaussian volume fraction as used in the previous example,
but with the high- and low-index materials reversed. The goal is to introduce two gaps, one
between the second and third bands, and another between the fourth and fifth bands. We use
two q0(α) functions as shown in Fig. 6b. The optimized structure is shown in Fig. 7a, with
very small band gaps nearω/2π ≈ 0.52, andω/2π ≈ 0.69. In other experiments we found
that by increasing the material contrast, similar structures with larger gaps can be obtained.

With regard to all of the previous examples, we should note that not all choices of
target gaps and initial configurations yielded successful results; in some cases the algorithm
terminated without producing a band gap. Indeed it seems clear that with finite contrast
materials, some band configurations should be unattainable.

6. CONCLUSIONS

An optimization-based evolution algorithm for producing band gaps in two-dimensional
photonic crystals inH -polarization has been presented. Numerical examples illustrate that
the algorithm is effective in producing a variety of structures with gaps at various points in
the spectrum.
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