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In the study of photonic crystals, the question arises naturally: Which crystals pro-
ducethelargestband gaps? This questionis investigated by means of an optimization-
based evolution algorithm which, given two dielectric materials, seeks to produce
a material distribution within the fundamental cell which produces a maximal band
gap at a given point in the spectrum. The caseélgbolarization in two dimensions
is considered. Several numerical examples are presenteooo Academic Press
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1. INTRODUCTION

Consider electromagnetic wave propagation in a periodic, dielectric, non-magnetic n
dium inIR2. We are interested in the case where the magnetic field vetisrpolarized
orthogonal to the direction of wave propagation. The time-harmonic Maxwell equatiot
then reduce to the scalar equation

—V.(yVu) =?u, inR? (1)
wherey (X) =1/¢(X), € is the real dielectric coefficient of the mediuwmis the out-of-plane
component of the magnetic field, andis the frequency. The structure is assumed to be
periodic with respect to the integer lattidee= 72, Z = {0, &1, 2, .. .}. In other words,

y(X) =y(x+n) forallne A,andx € R?
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BAND STRUCTURE OPTIMIZATION 215

An interesting feature of structures of this type is that, for certain functjgrisand
gaps i.e., intervals of frequencies in which waves cannot propagate in the medium, appt
This was proved in the case of certain high contrast structures by Figotin and Kuchm
[7, 8], and has been observed both computationally and experimentally in many otl
cases. See [1, 9] for an introduction to photonic crystals, computational methods, «
applications. In two dimensions, band gaps can occur both iHtp®larization case, as
modeled by (1), and in thE-polarization case, for which the modelHsAu = w?¢u. In a
previous paper [5], considering tlieparallel polarization case, the question was studied
Which periodic structures, composed of arbitrary arrangements of two given dielect
materials, produce the largest band gaps? The question was formulated as an optimiz:
problem, and approximate solutions were obtained through numerical computations
the present paper, our aim is to carry out a similar program of investigation fdd the
parallel polarization model (1). Thd-parallel problem is more difficult both theoretically
and computationally, due to the fact that the unknown coeffigieistnow present in the
differential operator. Further, a primary deficiency of the approach of [5] was that it requir:
an initial guess which already had a band gap. Here, a new evolution algorithm is preser
which allows structures with gaps to be produced without knowledge of an initial structu
with a gap.

The outline of this paper is as follows. In the next section we introduce the family of Bloc
eigenproblems associated with problem (1). We then formulate in Section 3 the probl
of maximizing band gaps about a given reference function and calculate the generali
gradient of the objective. In Section 4. the evolution algorithm is described. Finally |
Section 5 the results of several numerical experiments are presented.

2. EIGENPROBLEMS

The standard procedure for analyzing problem (1) ®&%&is to reduce it to a family of
subproblems over the periodic domain (torus)

Q = R?/A,

which can be identified with the unit square (0? ®ith periodic boundary conditions.
Defining the first Brillouin zon& =[—x, ]2, we seek eigenfunctionsof (1) in the form
of Bloch modes (see, e.g., [11]),
u(x) = €°*ug (x),
where the quasimomentum vectok K, and the function, is periodic.
If w? is an eigenvalue corresponding to the Bloch modeith o € K given, it follows
formally that the pair4?, u,) should satisfy

—(V4ia) - y(V+iou, = v’u, in Q. (2)
Conversely, eigensolutions of (2) yield Bloch mode solutions for problem (1). The tran

formation from problem (1) to the family (2) can also be viewed as an application of tf
Floquet transform [10]. We are interested in the family of problems (2)rasges oveK .
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Let us rewrite (2) as
A(y, @)u = AU, o e K, )

whereA(y,a) = —(V +ia) - y(V +ia) and the subscriat has been dropped from,.
Assuming thay is real, bounded, measurable, and has strictly positive essential infimut
one can show easily thak(y, @) is symmetric and positive semidefinite, with compact
resolvent on_?(Q). It follows that the spectrum of (3) consists of a discrete sequence
nonnegative eigenvalues, each of finite multiplicity. Obviously each eigenyadepends
ony anda. Repeating each eigenvalue according to its multiplicity, we enumerate

0 <My, @) <ray,a) < Ag(y,a) < ---o00.
For a giveny, the Bloch spectruns can be defined
B={}jy,0):xaeK,j=1,273,...}.

Frequencies such thatw? ¢ B have no associated Bloch modes and do not propagate
the structure. In the next section we formulate an optimization problem to find fungtions
which maximize gaps in the Bloch spectrum.

3. OPTIMAL DESIGN PROBLEM

Suppose that we are given two materials, say with dielectric constaarsde;, such
thateg < €3. We wish to find arrangements of the materials within the fundamentatxcell
which result in maximal gaps in the Bloch spectrum. Let us define a class of admissil
designs consisting of arbitrary arrangements of the two materials

1 1
ad = {]/(X) . )/(X) = e_OX(X) + 6_1(1_ X(X))’ X ES} ’

where S denotes the set of all measurable functionsdwhich are bounded between 0
and 1. We interprey (x) as the volume fraction of materiaj present at the poirk.

Let q(«x) be a given real-valued function defined on some sulget K. The number
q(«) represents a squared frequency about which we would like to maximize the distar
to any eigenvalug;(y, «).

Assume that there existg € ad and some index such that

Aj(vo, @) < (o) < Ajqa(yo, @), for all « € Kq.
We then define
9(y. 0; ) = min{g(@) — Aj (v, @), Aj11(y, @) — ()}, (4)
and

G(y.q) = JQIO gy, q; ). ®)
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Holding g fixed, we then consider the optimization problem

supG(y, Q). (6)

yead

The case wher& =K andq(a) = w3 corresponds to maximizing a band gap of the
structure about the center frequengy. The more general case of arbitrapyand Ky is
necessary to implement the evolution algorithm described in a following section and m
also be of interest for producing structures with directionally dependent band gaps.

One may rightfully question whether or not problem (6) admits a solution. In fact, simile
optimal design problems in mechanics are well known to give rise to optimizing sequent
of designs which become highly oscillatory and have no limit within the admissible clas
One of two strategies is usually employed to render such a problem well-posed. The f
is to constrain the admissible sadl to have sufficient compactness properties so that
convergent minimizing sequence is guaranteed. This is often accomplished through s
smoothness or perimeter constraint. The second strategy is to “relax” the admissible c
ad. This is accomplished by studying limiting behavior of minimizing sequences and e
larging the admissible class to include appropriate limits. In the case of (6), such lim
would include anisotropic media with certain constraints on the eigenvalues of the dielec
tensors.

Interestingly, in the numerical examples that follow, minimizing sequences showed
tendency to become oscillatory and converged to roughly the same solution regardles
the level of discretization of the problem. Finding the conditions under which existence
a solution can be guaranteed remains an important open problem, but further analys
beyond the scope of this paper.

In order to find approximate solutions to problem (6), would like to compute the gradie
of G with respect tg/. From the definition of5 in (4) and (5) we observe three difficulties
which may rendeG nondifferentiable in a classical sense. First, the eigenvalyesay
not be smooth functions gf at points of multiplicity. Multiple eigenvalues cannot be ruled
out and in fact are typical for structures with symmetry. Second, the minimum in (4)
not smooth when the two arguments are equal. Finally, in (5), the infimum of a family
functions may not be smooth, even if each function in the family is smooth. Neverthele
the resulting composite functid® is Lipschitz continuous (with an appropriate norm on
y), and so the concept of the generalized gradient, as defined by Clarke [2], makes ser

Taking the domain of definition d& to be the spac& of bounded measurable functions
of 2, the generalized directional derivative @fat y (with respect to the first argument),
in the directiony is defined by

e S+t @) — G,
Gy, q)(n) = limsup 7+ 1ty ‘1) 7.9

ti0

The generalized gradient & with respect to is then defined by

3,G(y,q) ={& € X' : Gy, q)(n) = (&, ), foralln € X},

whereX’ denotes the dual spaceXf Using the calculus of generalized gradients describet
in [2], and the results of Cox [4], the generalized gradig@t (with respect toy) can be



218 COX AND DOBSON

calculated in a straightforward way. First, following [4], we find
(v, @) C co{|(V +iaul®:ueli(y, o)},

where&l(y, «) is the span of all eigenfunctionsassociated with the eigenvalag(y, o)

and satisfying the normalizatiofy, lul?> = 1. Here co denotes the convex hull, i.e., the set of
all convex combinations of elements in the given set. From (4) and [2, Proposition 2.3.1
we have

9,9(y, q; a) C cofd, Aj1(y, o), =3, Aj(y, @)}

Finally, from (5) and [2, Theorem 2.8.2], we find

3,G(y,q) C co{d,g(y,q: @) : a € Argming(y, g; -)}.
Assembling the three previous results,

3,G(y.q) C co{co{co{|(V +imul®:ue &l (y.o)},
co{—|(V+imul®:ue&f(y.a)}} e € Argming(y.g:)}.  (7)

Note thatt G can be computed knowing only the eigenfunctions associated with eigenvalu
Xj(y, ) andij;1(y, @) atthe points where minima occur with respeat o the definition
(5). Since these eigenfunctions must typically be computed anyway to ev@lLaibéaining
gradient information is essentially no more expensive than computing the value of t
function itself.

4. EVOLUTION ALGORITHM

The basic algorithm consists of an inner optimization loop and an outer evolution,
homotopy, loop. The optimization loop is a simple projected generalized gradient asc
method, similar to the scheme described in [5]. We note that many general purpose al
rithms exist for extremizing nondifferentiable functions (see, for example, [12]), as well ¢
more specialized methods designed for minimax problems (see, for example, [3]). Any
these algorithms could in principle be substituted for our primitive optimization metho
The evolution loop is a simple strategy to homotopically deform the band structure of
given initial design into a desired configuration.

Assume we are given a closed suhisgtC K, a real-valued “target” functiog, defined
on Ko, an initial designy € ad, and a functiorgy defined onkKg such that

Xj(yo, o) < Qo) < Aj+1(y0, @), forall o € K.

ThusG(yo, o) > 0. For O< t < 1, definegy (@) =to() + (1 —t)gs1 (). Define the projec-
tion operatorP : L1(2) — ad by

1/€e; if f(X) < 1/e,
(PH(X) =< 1/eg if1/ep < f(X),
f(x) otherwise
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The basic algorithm proceeds as follows.

1. Sett:=0,k:=0, flag =0.
2. While G(w, q;) < tol; andflag= 0,
a. Choose a directioncss dG(yk, gt) and a step sizgg
to yield an increase ifs,
b. Setyki1 = POk + Bck)-
Setk := k + 1.
d. If step is sufficiently small then stop.

o

end

3. Ift < 1, increase by toly,
else sefflag := 1.

4. Goto step 2.

Thewhile loop in Step 2 constitutes the optimization. Step 2a in the inner loop is accor
plished by solving a small subproblem via linear programming, as described in [5].
increasing the objective(y, q;), eigenvalue bands are “pushed away” frgqmWhen all
eigenvalues are sufficiently far away (controlledtbly) from the currenty, the outer loop
moves the current; linearly toward the targedq;, by an amountol, (Step 3). The two
tolerancesol; andtol, are kept fixed and must be selected beforehand. The valte;aé

not crucial and can be chosen to be any relatively small number. The pardatetanst
then be chosen such that

tol, < toly/ max|qo(e) — qu(@)],
so that the condition

)"](ykv C() < qt+t0|2(a) < )Lj+l()/k: a)v o e KO

holds for the next iteration. Provided that each inner optimization is successful, the ou
loop gradually moves; toward the targed;, until finally it is reached. At this point, a flag
is set (Step 3) which allows the optimization to proceed without further stops to update
Convergence is checked in Step 2d according to step length. Note that the usual nece:
condition for optimality 0= 3G (see Clarke [2]) may not hold in this setting due to the
constraints ory.

5. NUMERICAL RESULTS

The algorithm described in the previous section was implemented in a discrete sett
using a finite element method coupled with a preconditioned subspace iteration for com
tation of the eigenvalues. The method employed for eigenvalue computation, and referer
to several other methods for band structure calculations, can be found in [6]. The numbe
eigenvalue computations carried out at each step in the optimization can be greatly redt
by considering only designs with some symmetry. In particular, we assume thais
invariant under the transformations

(X1, X2) > (—Xg, —X2), (X1, X2) = (—X1, X2) (X1, X2) = (X1, —X2).

In this case, it follows easily [5] that all possible eigenvalues must occur in the triangul
subset of the Brillouin zone

T={(ag,02) :0<7,0< a2 < g}
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a,

FIG. 1. Brillouin zone, with labels for symmetry points.

This region is shown in Fig. 1, along with labels on the vertices. Band structure plots in t
figures below show frequencieg 2z asa moves around the perimeterdf from[, to X,
to M, and back td".

Due in part to the crude step size control strategy used in our optimization algorithm
large number of iterations are typically required before any kind of convergence is observ
For the examples shown below, generally several thousand iterations (the total numbe
stepsinthe inner optimization loop) were taken. Fortunately, this is possible with reasona
computational effort since each step is quite inexpensive. With all code writfdatiab
and running on a 400 MHz Linux PC, a complete run of the evolution algorithm coul
generally be done overnight. With a more sophisticated optimization algorithm, the col
putational effort could probably be reduced significantly. All finite element computation
were done on a uniform 64 64 grid.

The following examples are computed using two materials with dielectric coefficien
€0 =1 ande; = 9. These values represent high-contrast materials in the optical frequen
range. Generally structures with larger gaps can be obtained if one is allowed to use hig
contrast materials.

In the first example, we take as an initial guess a low-contrast structure, shown in Fig.
which contains no band gaps. The structure is composed of two materials, with dieleci
coefficientss = 2.5 and 5. (The same structure does have a large band gap between the
and second bands with materiags= 1 ande; = 9.) We begin the evolution algorithm with
Oo(o) = A1(x) + 8, whereé is a small positive number. This positiogg between the first
and second eigenvalue bands, as shown in Fig. 2b. The tpggets set to a constant, so
that the optimized structure should have a band gap. The results are shown in Fig. 3. As
be seen, the optimized structure exhibits a band gapan&ar ~ 0.39.

In the second example, we take as a starting point the smooth structure shown in Fig.
The volume fraction of high index material in each cell is proportional to the Gaussic
e~27X* This structure has no band gap in the lower bands, as shown in Fig. 4b. The goe
to introduce a gap between the third and fourth bands. Similar to the previous example,
takeqo(a) = A3(e) + & and set the targef(«) constant. The optimized structure is shown
in Fig. 5a. As can be seen in Figs. 5b and 5c, this structure has a relatively large gap betw
the third and fourth bands, centered:g®r ~ 0.58.
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b

FIG. 2. Starting point for first example. (a) Initial structure. Dark represent.5, light represents =5.

(b) Eigenvalue bands. Dashed lingjigc). Note that a 4« 4 array of cells is illustrated in (a); computations were
done on a single cell.
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FIG. 4. Starting point for second example. (a) Initial structure. Dark repregeat, light represents =7.
(b) Eigenvalue bands. Dashed linegigx).
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FIG. 6. Starting point for third example. (a) Initial structure. Dark represert, light represents =7.
(b) Eigenvalue bands. Dashed lines are iniji@t) functions (the second line is not visible due to proximity with

the fourth band).
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With an obvious modification, the evolution algorithm can also be used to produce strt
tures with multiple band gaps. Consider for example the smooth starting point shown
Fig. 6a. This corresponds to a Gaussian volume fraction as used in the previous exam
but with the high- and low-index materials reversed. The goal is to introduce two gaps, ©
between the second and third bands, and another between the fourth and fifth bands. W
two go() functions as shown in Fig. 6b. The optimized structure is shown in Fig. 7a, wit
very small band gaps neay2r ~ 0.52, andw/27 ~ 0.69. In other experiments we found
that by increasing the material contrast, similar structures with larger gaps can be obtair

With regard to all of the previous examples, we should note that not all choices
target gaps and initial configurations yielded successful results; in some cases the algor
terminated without producing a band gap. Indeed it seems clear that with finite contr
materials, some band configurations should be unattainable.

6. CONCLUSIONS

An optimization-based evolution algorithm for producing band gaps in two-dimension
photonic crystals irH-polarization has been presented. Numerical examples illustrate th
the algorithm is effective in producing a variety of structures with gaps at various points
the spectrum.
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